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Abstract: An interior point method is proposed for a general nonlinear (non-
convex) minimization with linear inequality constraints. This method is a com-
bination of the trust region idea for nonlinearity and affine scaling technique for
constraints. Using this method, the original objective function is monotonically
decreased.

In the proposed approach, a Newton step is derived directly from the com-
plementarity conditions. A trust region subproblem is formed which yields an
approximate Newton step as its solution asymptotically. The objective function
of the trust region subproblem is the quadratic approximation to the original
objective function plus an augmented quadratic convex term. Similar to an
augmented Lagrangian function, this augmentation adds positive curvature in
the range space of the constraint normals.
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The global convergence is achieved by possibly using trust regions with differ-
ent shapes. A reflection technique, which accelerates convergence, is described.
Explicit sufficient decrease conditions are proposed.

Computational results of a two-dimensional trust region implementation are
reported for large-scale problems. Preliminary experiments suggest that this
method can be effective; a relatively small number of function evaluations are
required for some medium and large test problems.

Keywords: trust region, Dikin-affine scaling, an interior point method, Newton,
reflection

1 INTRODUCTION

Interior point methods have proven to be an efficient approach for solving large
scale linear and convex programming problems: see [24] for a comprehensive
bibliography. An appealing property of these methods is that a small number
of iterations is typically required to obtain an accurate solution for a large
problem. This property, if achievable, is even more attractive for a nonlinear
programming problem since function evaluation can be a dominant and costly
computation.

Interior point methods share a common characteristic: they avoid approach-
ing the boundary prematurely. The majority of interior point methods can
be interpreted as following the central path to optimality, e.g., [21; 31]. The
exception is the classical affine scaling algorithm [15; 33]. An affine scaling
method uses a diagonal scaling technique to compute a damped step which
ultimately leads to convergence to a solution. Despite the absence of a polyno-
mial convergence property, an affine scaling method is the only type of interior
point method which monotonically decreases the original objective function;
it stands out for its simplicity and typically good computational performance,
e.g., [1; 5; 33).

There has been great interest in generalizing interior point methods to non-
linear (nonconvex) programming problems, e.g., [16; 36; 9; 12; 14; 35; 25; 19; 4].
However, this has proven to be a difficult and challenging task.

For a nonconvex problem, a minimization method is typically able to com-
pute a local minimizer at best. This does not prevent its usefulness since an
initial point is often provided in applications and the local minimizer in the
neighborhood of this initial point can be sufficient. The majority of interior
point methods are based on the view that it is worthwhile to sacrifice decrease
of the original objective function in order to gain centrality, e.g., {21; 31]. This
view may not be reasonable for nonconvex problems; achieving centrality can
cause loss of information provided by the initial point and possibly cause con-
vergence to a local minimizer with a higher objective function value than that
of the initial point. FIG. 1.1 illustrates this effect: z; is the minimizer of the
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The Original Objective Function
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Figure 1.1 Loss of the Information from the Starting Point: ming<z<3 f{z)

barrier function for the original bound constrained problem with the barrier
parameter 7 = 1. Using a barrier function method with the initial o and
r = 1, the iterates will converge to the local minimizer z.. Using an algorithm
which monotonically decreases the objective function with the same initial zg,
the iterates will converge to the local minimizer z = 0.

Monotonicity offers a natural connection to the original problem. Mono-
tonicity and the simplicity of an affine scaling method makes it particularly
appealing and suitable for constrained nonconvex minimization. Based on this
philosophy, Newton type affine scaling algorithms have been considered for var-
ious structured linear and nonlinear programming problems [8; 7; 26; 9; 27; 25;
2; 14]. These methods represent a generalization of the affine scaling methods
to piecewise linear and nonlinear minimization. Such algorithms have fast local
convergence and typically solve a large problem in a small number of iterations.
For minimization with simple bounds, Newton steps are derived from the first
order necessary conditions directly and globalization is successfully achieved us-
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ing a trust region approach [9]. For [, problems and minimization of the sums
of Euclidean distances, the resulting algorithms become a natural enhancement
of the classical IRLS and Weiszfeld algorithms [26; 25].

We consider the problem of minimizing a general nonlinear (nonconvex)
function subject to linear inequality constraints,

mian?R" f(iE)
subject to Az > b, (1.1)

where AT = [a;,--+,a;,]) € R**™. Let F def {z : Az > b}. The strictly feasible

region int(F) - {z : Az > b} is assumed to be non-empty and a strictly
feasible initial point zo € int(F) is given. Moreover, f(z) is twice continuously
differentiable in F.

In this article, a trust region and affine scaling interior point method (TRAM)
is proposed for a general nonlinear minimization problem (1.1) with linear in-
equality constraints. Specifically, TRAM exhibits the following characteristics:

m  the iterates {z)x} are in the interior of the feasible region and the dual
multiplier approximations are only feasible in the limit;

m  the Newton steps are derived from the complementarity conditions;
m  the original objective function f(r) is decreased monotonically;

m  the trust region subproblems yield approximate Newton steps asymptot-
ically; these trust region subproblems can be solved using existing trust
region techniques; -

m  a reflection technique is used to accelerate convergence.

The presentation of the paper is organized as follows. In §2, an affine scaling
Newton process is firstly derived from the complementarity conditions of the
problem (1.1). Section §3 includes globalization of this Newton process within
a trust region context. A trust region subproblem which yields approximate
Newton steps asymptotically is motivated in §3. The shapes of the trust regions
necessary for convergence are analyzed in §3. The proposed TRAM algorithm
is outlined §3.1. A two-dimensional trust region generalization is included in
§3.2. Explicit decrease conditions for convergence to a local minimizer are
described in §3.3. A useful reflection technique is described in §3.2. Preliminary
computational results are presented in §4. Concluding remarks and possible
future research are included in §5.

In a separate paper [11], convergence properties of the proposed method are
presented.
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2 AN AFFINE SCALING NEWTON APPROACH

The first order optimality conditions of a constrained minimization problem
consist of the complementarity conditions, primal feasibility, and dual feasi-
bility. The following is a classical characterization of a local minimizer of the
linearly constrained problem (1.1), e.g., see Fletcher [18].

First Order Necessary Conditions

If . is a local minimizer of (1.1), then there exist Lagrangian multipliers
A such that z., A, satisfy:

Vi. - ATA, =0, (2.1)
Az, —b>0, (2.2)
A >0, (2.3)
(A\)i(aTz, —b;) =0, 1<i<m. (2.4)

Second Order Sufficiency Conditions

If at . there ezist A\, which satisfy (2.1)-(2.4), d¥V3f.d > 0 for all d # 0,
ald > 0 for allalz, —b; = 0, and aTd = 0 for all (\.); > 0, then x. is a strict
local minimizer of (1.1).

Condition (2.2) is referred to as primal feasibility, (2.3) is dual feasibility.
Conditions (2.1) and (2.4) are called the complementarity conditions and can be
equivalently expressed as an (m + n)-by-(m + n) nonlinear system of equations

diag(Az —b)A=0 and ATA-Vf=0. (2.5)

If there is no index i such that (\.); = alx., — b; = 0, then strict complemen-
tarity is said to hold.

Complementarity has played a central role in the successful primal-dual in-
terior point methods for linear and convex programming problems. The primal
dual interior point method [23], proposed by Kojima, Mizuno and Yoshise in
1987, maintains both the primal-dual strict feasibility and can be considered as
a damped Newton process on the perturbed complementarity conditions. For
(1.1), this perturbed complementarity conditions correspond to

diag(Az —b)A=pe and ATX-Vf(z)=0.

The parameter p > 0 is decreased to zero as a solution is approached.

Fiacco and McCormick {17] first considered this perturbed KKT condition
for an inequality constrained nonlinear programming problem. If f(z) is con-
vex, the solution to this nonlinear system, as the parameter p > 0 varies,
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defines a central path in the strictly feasible region. For a convex programming
problem, primal and dual feasibility together with complementarity sufficiently
characterize a solution.

Extension of a primal and dual method to a general nonconvex problem has
proven to be difficult and challenging [16; 14; 19; 4]. The first order neces-
sary conditions is no longer sufficient in characterizing a local minimizer for
a nonconver minimization problem. For example, a 2-norm penalty function
has been used to measure satisfaction of the first order necessary conditions
for a nonconvex problem in [16]. This method does not necessarily converge to
a local minimizer of the original minimization problem since the second order
necessary conditions may fail to hold.

We believe that monotonic decrease of the original objective function, if
achievable, is an important property of a minimization algorithm for noncon-
vex problems. This property enables a direct connection to the original mini-
mization problem. It can make use of information such as an available starting
point. We demonstrate that a Newton process based on the complementarity
conditions (2.5) can be used in combination with the trust region idea to achieve
convergence by monotonically decreasing the original objective function.

Let F(z,)) = 0 denote the complementarity conditions (2.5), i.e.,

def | diag(Az — b)A
Flz,2) = [ Vf(z) - ATA ]

The Newton step for F(z,A) = 0 at (z, Ax) is

diag(A\x)A diag(Azy — b) dy | _ [ diag(Azk — b)Xg o
V2 —AT - & | =7 | ve-aTxn |- (39

If z; is strictly feasible, then diag(Azy — b) is positive definite. An alternative
way of computing the Newton step (2.6) is to solve a n-by-n symmetric linear
system,

(AT (diag(A\x)diag(Aze — b)) A+ V2i)dY = —Viy, (2.7)

with the dual multipliers Ay, ; = A + d} updated as

A1 = —diag(\x)diag(Azy — b) "1 AdY .

The Newton system (2.6) has appealing properties in a neighborhood of a
local minimizer z, satisfying the second order sufficiency conditions. This is
described in Theorem 2.1. Its proof is straightforward and can be found in [11].
Let (v;w) denote the column vector in R"*™ formed from the vectors v € R
and w € R™.
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Theorem 2.1 Assume that f(z) : F — R is twice continuously differentiable
and the second order sufficiency conditions of (1.1) are satisfied at (z.;),).
Assume further that strict complementarity holds at x, and {a; : (\.); > 0}
are linearly independent. Then

(a) The Jacobian matriz VF(z,,\,) is nonsingular;

(b) The symmetric matriz (AT (diag(\)diag(Az —b) ") A+V2f(x)) is positive
definite when z € int(F) and (z; ) is sufficiently close to (z.;\.).

3 A TRUST REGION GLOBALIZATION

An immediate consequence of Theorem 2.1 is that, if zx € int(F) is in a
sufficiently small neighborhood of a solution, the Newton step d{cv of (2.5) is
descent for the objective function f(z). This suggests that, using this Newton
process, local convergence can be achieved from the interior of the feasible
region with a monotonic decrease of the objective function.

Maintaining strict feasibility can be done with a simple backtracking tech-
nique. This technique can be used to avoid approaching a boundary prema-
turely, which is important for the success of an interior point method.

Assume that z; + di brings a sufficient decrease of the objective function
but possibly violates strict feasibility. Then a damped step aid; can be taken
where

ar € laj, 0<6o < <1, o} ¥ min(1,8) (3.1)
and T T
def . a; T — b; a; rp — b;
©f min{-Z%k "% G Tk T 0 gy
,Bk mln{ adek a?dk }

The parameter §; determines the damped step ardy. Its choice is important for
the convergence properties of an affine scaling method for linear programming
[28; 32].

It is also possible to maintain strict dual feasibility, A > 0. However, since
global convergence is achieved by monotonic decrease of f(z), and maintaining
dual feasibility can lead to a smaller stepsize, we allow violation of dual feasibil-
ity. Hence only primal strict feasibility, Az > b, is maintained in the proposed
method; however, the dual multipliers play an important role in determining
the next step, particularly asymptotically.

The local Newton process needs to be globalized. Next we show that a New-
ton step can be globalized using a trust region approach. The main trust region
subproblem is motivated in §3. A trust region subproblem, which is useful oc-
casionally for quickly departing from a nearly binding constraint, is described
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in §3. The model algorithm is summarized in §3.1. A two dimensional trust

region subproblem is considered in §3.2. A reflection line search is proposed in
§3.2 to accelerate convergence.

A Trust Region Subproblem

Assume that i is strictly feasible. Let 1 (d) denote the quadratic approxima-
tion for f(z) at zx, i.e.,

Yu(d) & G d+ Sd V. (32)
Further, assume that the quadratic approximation ¥ (d) is a “good” approx-
imation to f(zx + d) — f(zx) within the trust region ||d||s < Ax. The goal is
to produce a step sk, Tk + sk € int(F), such that the quadratic approxima-
tion 9y (d) (and hence f(z)) achieves a good decrease. The Newton step (2.6)
locally produces a good decrease for f(z) but it may not be descent globally.
Furthermore, a damped step of the trust region solution miny4,<a, ¥x(d) may
fail to produce a sufficient decrease due to feasibility restriction. We want to
formulate a trust region subproblem with the following properties:

®m it is closely connected to the Newton step d{:" for fast local convergence;

m it produces a strictly feasible step which yields a sufficient decrease.

Let Cy and Dj denote diagonal matrices:

Cr ¥ diag(\c]), Di % diag(Azi — b).
Replacing diag(Ax) by Cx in (2.6), the modified Newton step dj,

CxA Dy & ]_ _Jo
R | Rl A B

approximates the Newton step sufficiently accurately, hence retains fast conver-
gence. Moreover, this modified Newton step dy is a minimizer of the augmented
quadratic ¢ (d) + 1dT AT D, ' Cy Ad, which can be considered a quadratic con-
vex regularization of the constrained problem (1.1) at z;. The quadratic ap-
proximation 1 (d) is sufficiently decreased if its convex regularization ¥ (d) +
1dT AT D; ' Ci Ad is sufficiently decreased. Using the augmented quadratic as
the objective function, a trust region subproblem consistent with the approxi-
mate Newton step dy is

: | I
jg;%l”’k(d)‘F 2d A" D. CyAd

subject to I(d; D 2 Ad)lla < Ay. (3.4)
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_1
The affine scaling D, ? controls the shape of the trust region so that a posterior
damping for strict feasxblhty can retain a large portion of the trust region

solution. Letting dx D 2Ad the trust region subproblem (3.4) is equivalent
to

min Yi(d) + ldATC'de
deRn deR™ 2
subject to Ad - D%d =0 {3.5)
(d; )2 < A

Since (3.4) and (3.5) are equivalent, we subsequently use these two formu-
lations interchangeably depending on the context. Since problem (3.5) is a
2-norm trust region subproblem with consistent equality constraints, existing
techniques for computing a solution can be applied to (3.5).

The augmented term %dTATD,lekAd in the objective function of the sub-
problem (3.4) serves a similar purpose to the augmented Lagrangian func-
tion for a constrained minimization problem [20]: it adds positive curvature
in the space spanned by the constraint normals. In addition, the curvature
augmentation is such that the minimizer of this augmented quadratic 1 (d) +
1 dTATD 1Cy Ad lies in the null space of the bmdmcr constraint normals asymp-

totlcally Together with the affine scaling D, % in the trust region bound, the
augmentation implies that a damped step of the solution pj of the subproblem
yields a sufficient decrease, if pj yields a sufficient decrease.

Consider the Newton step (pf; pIY) of the trust region subproblem (3.5), i.e.,

Vi AT
pk P ) = - [ 0 } + I: *-D;%— Al’;+l’ (36)
where Hk H(:ck)\k) and

H(z A)‘?ff[v?ﬁ(z) g] C = diag(|)]).

The matrix Hy is the Hessian of the augmented quadratic in (3.5).
A Newton step pl, with respect to (2.5), is the approximate Newton step

d; (3.3) since
CiA D Y _ 0 :
[ ngk —qu ] [ /\l;’iﬂ ] T [ Vik ] @7)
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Theorem 3.1 and 3.2 indicate that the trust region subproblem is consistent
with the original nonlinear minimization (1.1) with respect to the second order
optimality. Proofs for these theorems can be found in {11].

Theorem 3.1 Assume that [A, D.] has full row rank at z. € F and the com-
plementarity conditions are satisfied at (z.;\.). Let the columns of Z, de-
note an orthonormal basis for the null space of [A,D,]. If ZTI;I,. Z4 is positive
semidefinite, then d”V2f,d > 0 for any d satisfying ald = 0 for all i with
CLTIL'* - bi =0.

i

Assume that the pair (z,;\,) satisfies the first order necessary conditions
with strict complementarity, then the second order necessary conditions are
satisfied at z, if ZTH, Z, is positive semidefinite. Theorem 3.2 indicates that
quadratic convergence ensues if a damped Newton step p,’cV is taken locally.

Theorem 3.2 Assume 0 < p < 1 and f(z) : F — R is twice continuously
differentiable. Assume that {xyx} converges to x., a point satisfying the second
order sufficiency conditions with strict complementarity, and {a; : aTz. — b; =
0} are linearly independent. Then, for sufficiently large k, Z{ﬂ kZx 1S positive
definite and

flzk + sk) — f(zr) < wpr(sk), where sp = Oraipl and 6y < 6 < 1,

and o}, is defined in (3.1). In addition, if Txy1 = i + sk for sufficiently large k
and |0k — 1| = O(|[(zk; Ak) — (245 A )|2), then {{zx; AL)} converges quadratically
to (Z+; As).

Moving Away from a Nearly Binding Constraint

The trust region subproblem {3.4) addresses complementarity, second order
necessary requirement and fast local convergence. The only condition yet to
be considered is dual feasibility. The trust region subproblem (3.4) is not effec-
tive near a non-optimal point satisfying all the necessary optimality conditions
except dual feasibility, since both the solution of the trust region subproblem
(3.4) and the Newton step pkN are zero at such a point. This situation can occur
in a strictly linear problem; however, the nonlinearity of a problem (1.1) can
either alleviate or exacerbate this problem. On the one hand, the iterates may
approach a boundary more slowly due to nonlinearity of f(z). On the other
hand, once close to a boundary, the nonlinearity of f(z) may.make it harder
to move away.
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Starting from a relatively centered initial point, the above situation may be
rare or may not occur at all. However, when encountered, it is necessary to move
away from some nearly binding hyperplane alz — b; = 0. This situation can
be identified by a measurement for satisfaction of complementarity conditions
and dual feasibility.

Let jo identify a hyperplane from which departure is desired, e.g.,
k) & min{(Ak)i : |aTz — bi] < o and (Ax); < 0}, (3.8)
where o > 0 is a small constant. Let Dy be the modified affine scaling matrix
of D k-

(Di)ss & { (Dr)is  if i # o

11 otherwise. (3.9)

When there is no i with |azy — b < o and (M\); < 0, it is assumed that

~ ~ 1

jo = 0 and thus Dy = Dy. The trust region |{(d; D, * Ad)||, < Ay is elongated
along the normal a;, of the hyperplane identified, see FIG. 3.1. The following
subproblem is more appropriate near a non-optimal complementarity point:

. 1 - _
min Y (d) + §dTATDk 1CvAd

subject to  [{(d; D 2 Ad)||> < Ar. (3.10)

Figure 3.1 Leaving the Hyperplane ajTox - bj, =0

The Proposed Trust Region Algorithm

Using the trust region subproblems derived in §3 and §3, the general framework
of the proposed trust region and affine scaling interior point method is described
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in FIG. 3.2. Assume that a strictly feasible initial point z¢ € int(F) is given.
The proposed algorithm generates a sequence {z;} in the interior of the feasible
region F which converge to a solution.

TRAM Let 0 < p<n<1and g € int(F).

Step 1 Evaluate fx, Vfir and By =~ VZfi; compute an approximate Lagrangian
multiplier A\; and let Cy = diag(|Ax|).

Step 2 Compute a step sk, zx + s € int(F), based on the trust region subprob- .

lem
: . 11, To1
;2?1)‘?‘ ’L/)k(d)+2d A Sk CrAd
subject to llid; Sk_%d]“:g < Ag.

Step 3 Compute px = [f(zk + sx) — f(zx)]/Y(sk).

Step 4 If pr > p then set x4y = zx + si. Otherwise set Tk+1 = Tx. Update A
as specified.

Updating Trust Region Size A,
Let 0 < v <1< 7, be given.

1. If pr < p then set Ay € (0,714
2. If pr € (u,7m) then set Agyq € [114Ak, Ak

3. If pr > n then set Ak+1 € [Ak,’yzAk].

Figure 3.2 A Trust Region and Affine Scaling Interior Point Method

Consider the k-th iteration and let z € int(F). Assume further that 1 (d)
approximates f(zx + d) — f{zx) sufficiently accurately; otherwise, the usual
trust region size adjustment mechanism can be used to ensure this. The goal of
the computation at the k-th iteration is to produce a step s, such that x4 +s; €
int(F) and i (si) is sufficiently decreased. This task is accomplished in Step
2. A step s is computed via solving a trust region subproblem which minimizes
a quadratic objective function subject to a trust region bound constraint in the
2-norm measure,

: 1 T AT g—-1 )
({Ielg?l}‘ '(/)k(d)—l--é-d A Sk CrAd
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subject to  J|(d; S, Zd)l|2 < A, (3.11)

1 ~ 1
where Sy equals either D? or DZ. The presence of the affine scaling S is cru-
cial: it allows for a sufficiently large step. The affine scaling matrix Sy typically
equals Dy equals diag(Azy — b). Occasionally Sy equals Dy to facilitate stay-
ing away from the boundary. Asymptotically, however, S; equals D; and the
trust region solution is an approximate Newton step for the complementarity
conditions (2.5). Therefore fast local convergence can be achieved.

The affine scaling matrix S; € {Dk,f)k} can be specified to satisfy the
sufficient decrease conditions for optimality, see §3.3. Next we illustrate how a
two-dimensional subspace trust region approach can replace the full space trust
region subproblem (3.11).

A Two-dimensional Trust Region Algorithm

Computing a solution to the full-space trust region subproblem (3.11) can be
too costly for a large scale problem (1.1). Similar to a subspace approach for
unconstrained minimization 3], an appropriate small-dimensional trust region
subproblem can be used to approximate the full space trust region subproblem,

e.g.

1 R
min Y (d) + =dT Crd
deRn deR™ 2
subject to  Ad—SZd=0, (d;d)€ S (3.12)

l(d; d)ll2 < A

Here Sy denotes a small-dimensional subspace in R**™ e.g., |Si| = 2. Perfor-
mance of a subspace algorithm depends on the choice of the subspace Si. In
order to set up S effectively, we analyze a few important approximate solutions
to the trust region subproblem.

Let us first consider the typical choice of Sy = Dy. If the second order
information is absent, i.e., V2fy = 0 and Ci = 0 in (3.5), the solution of the
trust region solution (3.5) is in the projected gradient direction {gy; g ),

o = —(Vfi — AT),
~ def 1

Ly (3.13)
g = D, *Agy,

where )\ is the least squares solution to

EARN!
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with [ = %; more generally, I > 3 can be used. Moving along the projected gra-
dient direction (gx; gx) is an attempt to satisfy the complementarity conditions
(2.5) via a least squares approach.

Asymptotically, the Newton step pf is a solution to the trust region subprob-
lem. However, globally p{c" may not always be a good approximate solution,
e.g., pY may not exist or it may be a poor approximate solution when the
Hessian of the augmented quadratic is indefinite.

In order to yield a good decrease for ¢ (d) + %dTATD;lck Ad when its Hes-
sian is indefinite, a negative curvature direction is important. Since a Newton
step pkN is a Newton step for the augmented quadratic objective, i.e.,

(AT(Ck DA+ V)Pl = Vs, (3.15)

negative curvature can be detected, then computed in the process of comput-
ing the desired approximate Newton step. A negative curvature direction of
(3.15) can be computed by either a partial Cholesky factorization {20] or using
a conjugate gradient process with an incomplete Cholesky factorization as a
preconditioner.

An effective subspace S; can be formed from the first and second order
approximate solutions to the trust region subproblem (3.5). Let df denote the
solution of (3.15) if its coefficient matrix is positive definite and the computed
negative curvature direction of (3.15) otherwise. We propose to choose Sj to be
spanned by the projected gradient gx and the second order direction d§. The
projected gradient is especially important when a problem is nearly degenerate.
The addition of the Newton or the negative curvature directions are important
for fast global and local convergence. The two dimensional subspace trust
region subproblem is

1
min Y(d) + =dTATD'C Ad
dER™ ,dER™ 2
subject to  d € span{gy,d;} (3.16)

li(d; Dy Ad)|j2 < A

Since [gk, gx] and [dS, d5] both satisfy Ad — D,%ci = 0, the 2-dimensional trust
region subproblem (3.16) can be solved by first computing an orthonormal basis
for Sk in O(n + m) flops and then solving a trust region problem in %2 with a
constant cost. Computation of g and d§ is the main cost for a 2-dimensional
subspace trust region algorithm.

With respect to the choice S; = f)k, a Newton direction or a negative
curvature direction can be computed from

(AT(CkDi") A+ V3fi)dx = — V. (3.17)
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A first order approximate solution for (3.10) is a projected gradient direction
gka
3 € ~(Vfi — ATX), (3.18)

AT ~ 1
[_Di}AL:S[ng], 1> (3.19)

The projected direction gy is descent for ¢;(d) and leads to departure from the
hyperplane ajToz - bj, = 0.

where )\ solves

Let Ji denote the Newton step (3.17) when it exists and a negative curvature
direction of (3.17) otherwise. Using the projected gradient direction g and the
second-order direction df, the two-dimensional trust region subproblem is

. 1 _
min Yr(d) + §dTATSk 1CyAd

subject to d € span{gy, d¢}
I(d; S 2 Ad)||2 < Ak, Sk = Dy.

Compared to the unsymmetric linear system (3.3), the n-by-n symmetric
Newton system (3.15) is preferable since it leads to a negative curvature direc-
tion when the Hessian of v (d) + %dTATD,:leAd is indefinite. The disadvan-
tage of using the symmetric n-by-n linear system (3.15) rather than the un-
symmetric {m + n)-by-(m+n) linear system (3.3) is the increasing ill-condition
of (3.15) as a solution is approached. The stability of the related linear system
for linear programming has been studied [37; 34]. Similar issues are yet to be
investigated for the linear system (3.15) for a nonlinear programming problem
(1.1).

A Reflection Line Search

The effectiveness of an interior point method depends, in part, on the ability
to avoid getting close to the boundary prematurely. A trust region algorithm
using the subproblem (3.4) is similar to a Dikin affine scaling algorithm in that
no explicit effort is made to stay central when computing a descent direction.
For a Dikin affine scaling method, it is desirable that an initial point zq is ap-
proximately centered and damping is used to avoid getting close to a boundary
prematurely.

Explicit effort can be made to facilitate staying away from boundary and
achieve further decrease. A special line search has been used in {8] for linear I,
problems. For a nonlinear minimization with bound constraints, a reflection iine




234 ADVANCES IN NONLINEAR PROGRAMMING

search and its effectiveness is illustrated in [9; 10; 2]. We now examine a similar

reflection technique for the problem (1.1) with linear inequality constraints.
Assume that z; is the current strictly feasible point and dj is an approximate

solution to the trust region subproblem (3.11). If Sy = Dy and z}, is close to a

hyperplane al z = b;, then a solution p; to the trust region subptoblem {3.11)

will be nearly tangential to the hyperplane. However, the trust region may be
outside of the feasible region, see FIG. 3.3. To maintain strict feasibility, it is
possible to simply take a damped step by backtracking. Let us consider the
reflection direction pf of pi against the hyperplane alz — b; = 0, i.e.,

20?1%

R
Py =Dk — a;.
aiTai

Figure 3.3 Trust Region and Reflection

Use of the reflection direction ka has several benefits:

1. pf points away from the hyperplane azT T = b;;

2. moving along ka is likely to yield continual decrease of the objective
Yir(d);

3. pf can be computed with little cost.

This reflection process can be repeated for each pff. The effectiveness of the
reflection search is demonstrated with computational examples, see Table 4.7
in §4.
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Sufficient Decrease Conditions

Consider the current strictly feasible point zx. A step si, with {|sk|la < Ay
and zx + s € int(F), needs to be computed to generate a sufficient decrease
of the quadratic approximation 1x(d). Typically, the trust region subprob-
lem (3.11) with Sy equal to Dy leads to such a step. However, occasionally,
the subproblem with S equal to Dy, forcing departure from a constraint, is
more appropriate. To decide on the scaling Sk, we examine sufficient decrease
conditions for optimality.

The sufficient decrease conditions emerge naturally in the two dimensional
subspace trust region context. From inspection of (3.13) it follows that, the
complementarity conditions are satisfied at zj if and only if (gi; gx) = 0, where

Ok = —(Vafk - AT\p),
gr = —D} X,

AT A I:_S. ka
—Dy, - 0 |-
Let 6 € [60,1), 0 < 6p < 1, be a damping parameter for strict feasibility,

) def .
as in (3.1). Let g; = apgr, O = fraj, denote a damped minimizer of the

augmented quadratic objective along g; within the feasible trust region, i.e.,
ay, solves

and )\ solves

2
. a _
min {¥r(agr)+ f{!){ATD,c 'CxAgk, zr+agy € F}. (3.20)
0<a<Ax/II(gx; Dy 2 Agi)ll2

This suggests that a sufficient decrease of v (d) measured against 1k (g;) leads
to satisfaction of complementarity. This is expressed in condition (AS.1) in
FIG. 34.

The projected gradient g; attempts to satisfy (3.18),

AT 3= Vi
—Dy - 0 |-
Assume that strict complementarity is satisfied at 5. Then dual feasibility is

satisfied when gx = 0 and Dg X = 0. The damped minimizer g; def kg, ap =
fraj, is along the projected gradient g, where aj solves

2
: N A - _
min -, {wk(agk)-}-?g{ATDlekAgk’ zr+agr € F}. (3.21)
050§Ak/||(§k;D;§A§k)“2
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This leads to condition (AS.2) in FIG. 3.4 for dual feasibility.
Finally condition (AS.3) is sufficient for second order optimality and fast
local convergence when p; is defined as a damped minimizer, e.g.,

» def . .
Pk = akpr, o =6y, o =min(l,B), (3.22)

and f is the stepsize to the boundary along py, and (py; Pk) is a solution to the
trust region subproblem {3.5).

Sufficient Decrease Conditions. Let 0 < Bes,Bas By < 1 and B; > 0. Let
g« be defined by (3.13), gx be defined by (3.18) and p; be a solution to (3.5).
Let g;, g; and p; be as defined as in (3.20), (3.21) and (3.22) respectively. Let
[|skllz < BsAk. The sufficient decrease conditions are:

(AS.1) ¥i(sk) < Bes(vr(g}) + 2917 ATD; ' CrAgy);

(AS.2) Yr(sk) < Bar(Vilg;) + 2327 AT D  Cr AGL);

(AS.3) (¥ (sk) + 35§ ATD CrAsi) < By(v(py) + Lp3TATD; ' Cr Apy).

Figure 3.4 Sufficient Decrease Conditions for the First and Second Order Optimality

Conditions (AS.1), (AS.2) and (AS.3) are closely related to the sufficient
decrease conditions proposed for the bound constrained minimization problem
[9] and the nonlinear [; problem {25]. In [11], these conditions will be rigorously
analyzed to establish convergence properties for the linearly constrained mini-
mization (1.1). Essentially, under reasonable assumptions, if (AS.1) is satisfied
at each iteration, then any limit point of {z;} will satisfy the complementarity
conditions. If, in addition, (AS.2) is satisfied asymptotically, then any limit
point with strict complementarity also satisfies the first order necessary condi-
tions. Furthermore, if (AS.3) is satisfied asymptotically, then the second order
necessary condition is satisfied at a limit point with strict complementarity.
Finally, with the additional assumption the second order sufficiency conditions
at a limit point, convergence is locally quadratic.

Clearly, a step s; can be determined to satisfy (AS.1), (AS.2) and (AS.3)
at every iteration if g, gx and p; are computed. However since (AS.2) and
(AS.3) only need to be satisfied asymptotically, less costly alternatives exist.
In particular, the reflection search discussed in §3.2 can be combined with a
dogleg line search to satisfy these conditions.

4 COMPUTATIONAL EXPERIENCE

To illustrate its potential, preliminary computational experience is reported
for our TRAM implementation. A trust region subproblem is solved via a
two dimensional approximation as described in §3.2. The projected gradient
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gk 1s computed using a sparse least squares solver, e.g., {30]. A reflection
technique described in §3.2 is incorporated. The details of the implemented
two-dimensional subspace algorithm are described in FIG. 4.1.

A large scale nonlinear minimization test problem (1.1) is generated in a sim-
ilar fashion to the test problems for a nonlinear minimization subject to simple
bounds [9; 13]. Nonlinear objective functions f(z) are chosen from two classes:
the nonlinear test problem collection for unconstrained minimization {29], and
the molecule minimization problem. In the latter, the objective function f(z)
has the following formulation {22; 6],

fl@)= " (i — ;3 - d%)?,

{i.)es

where z; denotes the position of the atom and d;; is the known distance between
a pair of atoms (7, ).

The inequality constraints Az > b consist of lower bounds, upper bounds and
inequality constraints obtained from a random sparse matrix CT = [¢;, ¢, - -,
Cmo) € R™*™0 with the 5-point difference pattern. Solving an unconstrained
minimization problem first, the constraints Az > b are formulated in a fashion
similar to the bound constraints in the test problems used in {9; 13].

For the results reported subsequently, computation is terminated when

Hzx) = f(Thq)

either 6, <tol or < tol

max(1,|f(zx)]) —

where tol equals 1078,

Table 4.1 lists the number of function evaluations required for each testing
problem using standard nonlinear test functions. The number of iterations
required is typically small, e.g., less than 20. In addition, computation of the
projected gradient g is infrequent for the generated test problems in Table 4.1;
gk is computed 42 times for the 64 tests.

Table 4.2 tabulates the statistics of the computed solutions. The num-
bers under the column opt are the optimality measurement 6, at termina-
tion and the values under deg are the strict complementarity measurement
min(Azi —b+|Ax]) at termination. It is evident that there are many constraints
active (typically far more than the number of iterations required to solve a prob-
lem). A substantial portion of the active constraints at the computed solution
are not simple bounds. Fairly good accuracy is obtained, even in the presence
of near degeneracy. Note that column “deg” measures only one type of de-
generacy. Ill conditioning can also come from near singularity of the projected
Hessian (which seems to occur for problems GENSING, CHAINGENSING and
DEGENSING). In Table 4.2, for problems GENWOOD, CHAINWOOD and
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A 2-dimensional TRAM Algorithm. Assume that zo € R with Az > b

Step 1

Step 2

Step 3

Step 4

is given. Let p = 0.05 and n = 0.75.

Evaluate fx, Vfy, V2fr; Compute the projected gradient g, Lagrangian
multiplier A\; and Cj; Compute a complementarity measure 65 =
|DikAk|loo, dual feasibility measure 9‘3 = mingy,),<o(|(Ax):]) and a first
order optimality measure 6;, = (6 + 9?)/(1 + 65 + 99);

if 65 < 1072 min(1,0g), compute Gi; end;
if 8¢ > 10"2min(1,6d) or
vi(9;) + 394" ATDyCeAgy < yi(3r) + 2a:TATD; Ci Agy
Sk = Dy;
else
Sk = Dk; 9 = Gr; 9k = Gk;
end
Compute df by (3.15) and let p;. solve a 2-dimensional suproblem

. 1 -
min Yr(d) + 5dTATSk 1CyAd
subject to d € span{ gk, d}}

Ild; S * Adjll2 < Ay

if (Ye(pt) +3pp" AT D CrApy) < 0.99(yx(g7) + 191 TAT D Cr Ag))

Sk = Pi;
else
let pf' be the damped minimizer of 1x(d) along the reflection
path of py;
sk = argmin{yk(d) : d=ag; + (1 —a)pl, 0<a < 1};
end
Compute pi = [f(zx + si) — f(zk)]/¥r(sk);

If pr > p then set x4 = x4 + sx. Otherwise set Tk+1 = Tk-
Update Ay as specified in FIG. 3.2.

Figure 4.1 A 2-dimensional Trust Region Affine Scaling Method for Minimization Subject
to Linear Inequality Constraints
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Number of Function Evaluations

| (m,n) Il (350,100) | (875,250) | (1750,500) | (3500, 1000) |
| GENROSE || 14 | 13 | 20 | 14
| GENSING N 22 | 3¢ | 43 | 43
| CHAINSING || 17 | 22 | 35 | 26
| DEGENSING || 23 | 28 | 25 | 31
| GENWOOD || 13 | 17 | 16 | 20
| CHAINWOOD || 16 | 12 | 15 | 16
| BROYDEN1A || 12 | 13 | 23 | 26
| BROYDENIB || 12 | 14 | 18 | 28
| BROYDEN2A || 16 | 22 | 27 | 22
| BROYDEN2B || 17 | 21 | 17 | 22
| TOINTBROY || 19 | 14 | 43 | 34
| CRAGGLEVY || 19 | 21 | 28 | 29
| AUGMLAGN || 77 | 78 | 52 | 141
| BROWN3 N 12 | 15 | 18 I 17
| BVP N 53 | 6 | 11 [ 5
| VAR MW w6 | 13 | 15 | 17

Table 4.1 Number of Function Evaluations

I
|
I
I
I
I
|
|
I
|
|
I
I
|
I
|
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| Statistics at Termination ]

| problems “ #fevals | activities | opt | deg I
| GENROSE || 14 | 504 |107'° | 1073 |
| GENSING | 43 | 646 | 107* | 1072 |
|CHAINSING | 26 | 677 | 107® | 107 |
| DEGENSING || 31 | 671 | 1077 | 107° |
| GENWOOD || 20 | 798 | 107® | 107°" |
| CHAINWOOD | 16 | 807 | 107® | 10737 |
| BROYDEN1A || 26 | 693 | 107° | 107* |
| BROYDENIB || 28 | 695 | 107° | 107* |
| BROYDEN2A || 22 | 483 | 1077 | 107*" |
| BROYDEN2B || 22 | 511 | 107® | 107* |
| TOINTBROY || 34 | 709 | 1077 | 107* |
| CRAGGLEVY || 29 | 377 | 107® | 107* |
| AUGMLAGN || 141 | 442 | 107® | 1073 |
| BROWN3 | 17 | 68 | 107® | 107 |
| BVP RS
| VAR |17 | 646 | 107° | 107 |

Table 4.2 Characteristics of the Lomputed Solutions (m,n) = (3500, 1000)
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Number of Function Evaluations

| (250,100) | (500,200) | (750,300) | (1000,400) | (1250,500) |

| 48 | 5 | 64 | 65 | 65
| 41 | 53 | 42 | 53 | 53
| 36 | 46 | 67 | 97 | 97
| 36 | 42 | 4 | 65 | 65
| 31 | 40 | 69 | 65 | 65
| 32 | 6 | 67 | 73 | 73
| 3 | s | 7 | 9 | 9
| 4 | 55 | 5 | 65 | 65
| 3 | 47 | 65 | 52 | 52
| 46 | 39 | 5 | 63 ] 63
37.7 | 492 | 605 | 693 | 827

Table 4.3 Number of Function Evaluations for Molecule Problems with Constraints

|
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I Number of Function Evaluations |

| (350,100) | (700,200) | (1050,300) | (1400,400) | (1750,500) |

| 36 | 46 | 72 | 64 | 70 |
| 49 | 31 | 34 | 56 | 101 |
| 28 | 31 | 13 | 77 | 67 |
| 3 | 46 | 52 | 127 | 63 |
| 3 | 24 | 72 | 94 | 62 |
| 19 | 28 | 49 | 35 | 69 |
| 20 | 3 | 5 | 46 | 4 |
| 27 | 3 | 37 | 87 | 52 [
| 26 | 28 | 38 | 46 | 65 |
| 38 | 40 | 55 | 49 | 49 |
| 307 | 35 | 577 | 681 | 639 |

Table 4.4 Number of Function Evaluations for Molecule Problems with Constraints
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| #fevals | activities | opt | deg |

| 64 | 208 |107° | 107° |
| 56 | 79 ]107°|107° |
| 77 | 1M |107° | 107° |
| 127 | 103 |107° | 107" |
| 94 | 122 |1077 | 107° |
| 3 | 260 |107° | 107 |
| 46 | 262 |1077 | 107° |
| 87 | 219 |107° | 107° |
| 46 | 165 |107° | 107° |
| 49 | 155 |107® | 107° |

Table 4.5 Characteristics of the Computed Solutions for Molecule Problems (m,n) =
(1750, 500)
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{ Number of Function Evaluations |

| 100 | 200 | 300 | 400 | 500 |

55 | 94 | 108 | 152 | 119
39 | 72 | 103|132 | 138

46 | 128 | 75 | 124 | 138

53 | 84 | 98 | 114 | 101
84 | 120 | 99 | 167
48

| |
I |
| |
| 53 | |
| 57 | |
| | 78 | 112 | 127 | 187 |
| 71 | 76 | 98 | 138 | 116 |
| 41 | I
| 66 | |
| 66 | |

41 | 95 | 89 | 120 | 124
66 | 64 | 100 | 206 | 171
66 | 103 | 90 | 125 | 120

Table 4.6 Number of Function Evaluations for Unconstrained Molecule Problems
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BROYDEN2A, the gradients of the active constraints are structurely rank de-
ficient, e.g., GENWOOD and BROYDEN2A are deficient by 1, CHAINWOOD
by 2.

Tables 4.3-4.5 illustrate performance of our 2-dimensional TRAM imple-
mentation when the objective function is a molecule minimization. Here the
objective function is a quartic; this class of problems is difficult to solve due
to the presence of negative curvature. Again g, is computed infrequently: 6
times for the 50 problem instances in Table 4.4. As indicated by Table 4.3
and 4.4, the number of iterations grows with the problem size, although the
number of function evaluations are still significantly less than the number of
active constraints at the solution, see Table 4.5. The growth of the number of
iterations, as the problem dimension is increased, is probably due to the severe
nonlinear and nonconvex nature of the molecule minimization problem rather
than the technique of handling constraints. This is certainly supported by the
computational results in Table 4.6 in which each molecule testing problem is un-
constrained. We observe a similar growth in the number of function evaluations
as the problem size is increased. This suggests that, for these problems, the
approximation of the full space trust region subproblem by a two-dimensional
trust region subproblem becomes increasingly less accurate as the problem size
is increased.

In Table 4.7 the effectiveness of reflection is illustrated: the first column
under each problem size entry list the number of function evaluations with a
reflection and the second column without a reflection. The maximum num-
ber of reflections allowed is 20 at each iteration and the cost of reflection is
insignificant. It is evident that the reflection technique significantly improved
the efficiency of the algorithm.

5 CONCLUDING REMARKS

The main objective of this article is to motivate a trust region and affine scaling
interior point method (TRAM) for general nonlinear (nonconvex) minimization
with linear inequality constraints. )

Based on the belief that a monotonic decrease of the original objective func-
tion is important for general nonlinear minimization, a Newton step based on
the nonlinear system of equations expressing the complementarity conditions
is considered. A trust region subproblem is formed consistent with the Newton
step. This trust region subproblem yields an approximate Newton step for the
complementarity conditions asymptotically. The quadratic objective function
of the trust region subproblem is the quadratic Taylor approximation ¥x(d) to
the original objective function f(z) plus a convex quadratic term determined
by affine scaling and the Lagrangian multiplier approximation. Affine scaling in




246 ADVANCES IN NONLINEAR PROGRAMMING

l Number of Function Evaluations |

| (250,100) | (500,200) | (750,300) | (1000,400) | (1250,500) |

|46 | 51 || 83 | 85 | 65 | 94 | 8 | 108 | 77 | 124 |
| 33| 58 | 58 | 58 | 53 | 87 | 80 | 155 1|1‘>0| 196 |
|33 ] 44 || 69 | 71 || 73 | 177 || 97 | 229 || 81 | 122 |
|42 | 70 || 39 | 63 || 42 | 99 | 8 | 101 | 69 | 81 |
| 44| 84 || 40 | 66 | 109 | 121 || 86 | 91 | 81 | 139 |
|28 ] 40 || 77 | 101 || 90 | 117 || 75 | 134 || 130 | 141 |
| 26| 32 || 51 | 59 || 78 | 134 || 76 | 148 | 83 | 161 |
| 37| 46 || 82 | 127 || 93 | 161 || 77 | 93 | 94 | 130 |
| 41| 58 || 48 | 56 | 51 | 71 | 75 | 258 || 71 | 138 |
|30 | 52 || 30 | 62 || 54 | 95 | 69 | 92 | 79 | 106 |

| 36 | 53.5 || 57.7 | 74.8 || 70.8 | 115.6 || 80.4 | 140.9 || 88.5 | 133.8 |

Table 4.7 With and Without Reflection for Constrained Random Molecule Problem s
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both the quadratic objective function and the trust region bound constraint al-
lows the fast convergence of the iterates from the strictly feasible region. Since
the effectiveness of an interior point method depends, in parts, on avoiding
approaching the boundary of the feasible region prematurely, a reflection line
search is proposed to facilitate this.

The proposed algorithm TRAM is related to a Dikin-affine scaling algorithm.

However, our typical affine scaling is D;% rather than D,:l and there is an
augmented term in the objective function contributes additional scaling. In
addition, the proposed algorithm is a Newton-type algorithm for a nonlinear
minimization and has fast local convergence.

Explicit decrease conditions are proposed for complementarity, dual feasibil-
ity and second order optimality. Global and local convergence analysis of the
TRAM algorithm is presented in [11].

A two-dimensional subspace trust region framework is analyzed and imple-
mented for large scale problems. Within this subspace framework, the main
computation of each iteration can be done using (partial) Cholesky factoriza-

tion and least squares solve. Préliminary computational results suggest that
the proposed method can be effective.
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